Sindobatam

Dapatkan berita terbaru

Debut vortisitas elektronik – Aliran fluida dapat memungkinkan generasi elektronik berikutnya

Debut vortisitas elektronik – Aliran fluida dapat memungkinkan generasi elektronik berikutnya

Pusaran elektronik seperti cairan

Sudah lama diharapkan tetapi tidak pernah diamati, pusaran elektron seperti cairan dapat dimanfaatkan untuk elektronik energi rendah generasi berikutnya. Kredit: Kristen Danilov, MIT

Telah lama diprediksi tetapi tidak pernah diamati sebelumnya, perilaku elektron yang seperti cairan dapat dimanfaatkan untuk elektronik generasi berikutnya yang hemat energi.

Meskipun molekul air adalah molekul yang berbeda, mereka secara kolektif mengalir sebagai cairan, menciptakan arus, gelombang, pusaran, dan fenomena fluida klasik lainnya.

Tidak sama dengan listrik. Sementara arus listrik juga terdiri dari partikel yang berbeda – dalam hal ini, elektron – partikel sangat kecil sehingga setiap perilaku kolektif di antara mereka ditenggelamkan oleh efek yang lebih besar ketika elektron melewati logam biasa. Namun, dalam bahan tertentu dan dalam kondisi tertentu, efek ini hilang, dan elektron dapat secara langsung mempengaruhi satu sama lain. Dalam kasus khusus ini, elektron dapat mengalir secara kolektif seperti cairan.

Sekarang, fisikawan di[{” attribute=””>MIT and the Weizmann Institute of Science have finally observed electrons flowing in vortices, or whirlpools — a hallmark of fluid flow that theorists predicted electrons should exhibit, but that has never been seen before now.

“Electron vortices are expected in theory, but there’s been no direct proof, and seeing is believing,” says Leonid Levitov, professor of physics at MIT. “Now we’ve seen it, and it’s a clear signature of being in this new regime, where electrons behave as a fluid, not as individual particles.”

Reported on July 6, 2022, in the journal Nature, the observations could inform the design of more efficient electronics.

“We know when electrons go in a fluid state, [energy] Disipasi turun, yang penting dalam mencoba merancang elektronik berdaya rendah, “kata Levitov. “Pengamatan baru ini adalah langkah lain ke arah itu.”

Levitov adalah rekan penulis makalah penelitian baru, bersama dengan Eli Zeldov dan lainnya di Institut Sains Weizmann di Israel dan Universitas Colorado di Denver.

Aliran elektron emas eksotis tungsten diklorida

Pada sebagian besar bahan seperti emas (kiri), elektron mengalir dengan medan listrik. Tetapi fisikawan MIT telah menemukan bahwa dalam tungsten deklorida yang eksotis (kanan), partikel dapat membalikkan arah dan berputar seperti cairan. Kredit: Atas perkenan para peneliti

tekanan kolektif

Ketika listrik melewati sebagian besar logam dan semikonduktor biasa, jalur torsi dan elektron dalam arus dipengaruhi oleh pengotor dalam material dan getaran di antara atom-atom material. Proses ini mendominasi perilaku elektron dalam bahan biasa.

Tetapi para ahli teori telah meramalkan bahwa dengan tidak adanya proses klasik biasa seperti itu, efek kuantum akan mendominasi. Yaitu, elektron harus menangkap perilaku kuantum yang tepat satu sama lain dan bergerak secara kolektif, seperti cairan elektron kental seperti madu. Perilaku seperti cairan ini akan muncul dalam bahan ultra murni dan pada suhu mendekati nol.

Pada tahun 2017, Levitov dan rekan-rekannya di Universitas Manchester melaporkan tanda-tanda elektron seperti cairan perilaku di grapheneDan[{” attribute=””>atom-thin sheet of carbon onto which they etched a thin channel with several pinch points. They observed that a current sent through the channel could flow through the constrictions with little resistance. This suggested that the electrons in the current were able to squeeze through the pinch points collectively, much like a fluid, rather than clogging, like individual grains of sand.

This first indication prompted Levitov to explore other electron fluid phenomena. In the new study, he and colleagues at the Weizmann Institute for Science looked to visualize electron vortices. As they write in their paper, “the most striking and ubiquitous feature in the flow of regular fluids, the formation of vortices and turbulence, has not yet been observed in electron fluids despite numerous theoretical predictions.”

Channeling flow

To visualize electron vortices, the team looked to tungsten ditelluride (WTe2), an ultraclean metallic compound that has been found to exhibit exotic electronic properties when isolated in single-atom-thin, two-dimensional form.

“Tungsten ditelluride is one of the new quantum materials where electrons are strongly interacting and behave as quantum waves rather than particles,” Levitov says. “In addition, the material is very clean, which makes the fluid-like behavior directly accessible.”

The researchers synthesized pure single crystals of tungsten ditelluride, and exfoliated thin flakes of the material. They then used e-beam lithography and plasma etching techniques to pattern each flake into a center channel connected to a circular chamber on either side. They etched the same pattern into thin flakes of gold — a standard metal with ordinary, classical electronic properties.

They then ran a current through each patterned sample at ultralow temperatures of 4.5 kelvins (about -450 degrees Fahrenheit) and measured the current flow at specific points throughout each sample, using a nanoscale scanning superconducting quantum interference device (SQUID) on a tip. This device was developed in Zeldov’s lab and measures magnetic fields with extremely high precision. Using the device to scan each sample, the team was able to observe in detail how electrons flowed through the patterned channels in each material.

The researchers observed that electrons flowing through patterned channels in gold flakes did so without reversing direction, even when some of the current passed through each side chamber before joining back up with the main current. In contrast, electrons flowing through tungsten ditelluride flowed through the channel and swirled into each side chamber, much as water would do when emptying into a bowl. The electrons created small whirlpools in each chamber before flowing back out into the main channel.

“We observed a change in the flow direction in the chambers, where the flow direction reversed the direction as compared to that in the central strip,” Levitov says. “That is a very striking thing, and it is the same physics as that in ordinary fluids, but happening with electrons on the nanoscale. That’s a clear signature of electrons being in a fluid-like regime.”

The group’s observations are the first direct visualization of swirling vortices in an electric current. The findings represent an experimental confirmation of a fundamental property in electron behavior. They may also offer clues to how engineers might design low-power devices that conduct electricity in a more fluid, less resistive manner.

“Signatures of viscous electron flow have been reported in a number of experiments on different materials,” says Klaus Ensslin, professor of physics at ETH Zurich in Switzerland, who was not involved in the study. “The theoretical expectation of vortex-like current flow has now been confirmed experimentally, which adds an important milestone in the investigation of this novel transport regime.”

Reference: “Direct observation of vortices in an electron fluid” by A. Aharon-Steinberg, T. Völkl, A. Kaplan, A. K. Pariari, I. Roy, T. Holder, Y. Wolf, A. Y. Meltzer, Y. Myasoedov, M. E. Huber, B. Yan, G. Falkovich, L. S. Levitov, M. Hücker and E. Zeldov, 6 July 2022, Nature.
DOI: 10.1038/s41586-022-04794-y

This research was supported, in part, by the European Research Council, the German-Israeli Foundation for Scientific Research and Development, and by the Israel Science Foundation.